
Low-Latency Deterministic Multiplier
for Stochastic Computing

Anwar K. Hussein and N. Sertac Artan∗
Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY

emails: {ahusse14, nartan}@nyit.edu
∗Corresponding Author

Abstract—The cost, power consumption, and availability of
large-scale computing resources dampen the progress in com-
puting. Stochastic Computing (SC) aims to mitigate this issue
with more efficient primitives for approximate computing. Yet,
high latency and low accuracy prevent the adoption of SC.
SC accuracy can be improved by replacing Random Number
Generators with generators of Low Discrepancy (LD) sequences
such as Sobol. The large area requirement of these generators
are mitigated with Finite-State Machine (FSM) based methods.
FSM-based multipliers led to significant gains in accuracy and
latency. Nevertheless, FSM-based methods are still impractical, as
multiplication still takes up to 22N cycles. Another approach for
improving latency is resolution splitting (RS). However, RS does
not take advantage of the properties of the operands. In this
paper, we propose to merge these two leading approaches for
reduced latency. The speed advantage of the proposed approach
is demonstrated with an image-filtering task. The proposed
approach speeds up multiplications up to 604× compared to
conventional SC, and a 2.35× compared to the state-of-the-art
SC at the cost of increased area.

I. INTRODUCTION

Stochastic computing (SC) allows the execution of arith-
metic functions with simple and area-efficient circuits. Opera-
tions such as multiplication and addition can be performed
using an AND gate and a multiplexer, respectively [1]. In
SC, numbers are expressed in terms of the probability of the
occurrence of 1s in a bit-stream. In stochastic numbers, each
bit has the same unit weight (similar to unary numbers). This
representation with a bit-stream with equally weighted bits
makes SC resilient to errors and reduces hardware cost.

High processing cycles and inaccuracy in computation are
the major drawbacks of conventional stochastic circuits. The

TABLE I: Comparison of Stochastic Computing Methods.

Method Number Source Cycles

Conventional Stochastic LFSR, Counter 2N

Deterministic rotation, clk division 2N

Resolution Splitting (C = 2) rotation, clk division 2N/2

FSM-based serial FSM+MUX 2N

FSM-based parallel FSM+MUX 2N/N

inaccuracy in the stochastic circuits is primarily caused by
the randomness of the bit order due to the random number
generators (RNG), which are used to generate the stochastic
bit-streams. The most commonly used RNG in conventional

stochastic computing (CSC) is Linear Feedback Shift Register
(LFSR) [2].

Deterministic stochastic computing (DSC) minimizes or
eliminates the inaccuracies at the cost of increased latency [3]–
[5]. DSC guarantees that for a binary operator (e.g., multi-
plication of two numbers), each bit in one of the operands
is evaluated against every bit of the other operand. This
eliminates the randomness in the bit order and thus eliminates
errors. DSC achieves this by rearranging and replicating the
bit-streams using three different techniques: (1) relatively
prime length, (2) rotation, and (3) clock division [3]. However,
this replication also significantly increases the total processing
time.

Another solution to increase the accuracy of SC is to use
low-discrepancy sequences such as Sobol or Halton sequences
for generating stochastic numbers instead of the LFSRs used in
conventional SCs [6]. To accurately represent a binary number
with a stochastic number, the bit-stream generator has to run
for the full processing cycle, which depends on the precision
of the given number.

To represent an N -bit number, 2N processing cycles are
required and to multiply two N -bit numbers with DSC, 22N

cycles are required. To reduce the number of cycles for mul-
tiplication, Sim and Lee have proposed a down-counter-based
stochastic multiplier, where the operation can be completed
before reaching the full processing time in most cases [7].
Their approach also uses a Finite State Machine (FSM) for
LD sequence generation. In their approach, referred here as
FSM-based Serial, they used a down counter to generate one
of the operands. This down counter also determines the total
number of cycles. In other words, it decides when to end
the multiplication based solely on the value of one of the
operands. Note that, in their approach, the early completion of
the operation is achieved by preserving the full accuracy of the
result. Here, we call this as early completion technique. The
operand generated by this down counter is a left flushed unary
number. Additionally, Sim and Lee also proposed a parallel
approach to further speed up the calculation, referred in this
paper as FSM-based Parallel.

To address the high processing cycle time in SC, another
parallel method has been proposed by Najafi et al. called
resolution-splitting [8]. Latency exponentially increases in SC
when the precision of the operands increases. In resolution-
splitting, SC is performed by reducing the precision of the



Fig. 1: Stochastic bit-stream generation using a Random
Number Generator (RNG) such as a Linear Feedback Shift
Register (LFSR).

Fig. 2: Stochastic multiplier using an AND gate.

operands by splitting the operation into reduced precision
operands. This led to much shorter bit-streams, and running
operations on these bit-streams is more efficient. The interme-
diate results produced by these operations are then combined
to produce the final result. The number of operands after the
split is determined by a coefficient, C, which is a multiple of
2. Table I shows the time complexity of different SC methods
discussed in this paper. The number source column indicates
the bit generator used for the respective methods.

This paper is built upon the following observations: First,
the resolution splitting improves the processing speed by
reducing operand size, which is independent of the operand
value, and improves worst-case performance. On the other
hand, the early completion technique in the FSM-based meth-
ods does not affect the worst-case behavior. Conversely, it
improves the average case. Thus, early completion is beneficial
for practical applications, where most operations do not require
the worst-case because not all operands are 2N−1. These two
gains are orthogonal, and exploiting them together is poten-
tially beneficial. In this paper, we propose a method taking
advantage of both resolution splitting and early completion for
speeds higher than both approaches. We demonstrated that our
method can significantly improve the performance of practical
applications using the example of image filtering. The area
cost of our method is higher than resolution splitting but on
par with the FSM-Parallel method.

The main contributions of this paper are 1) A parallel, early
completion approach with high performance in worst-case and
average-case. 2) Application of the proposed method in image
filtering. The rest of this paper is organized as follows: Section
II gives a brief background to stochastic computing. In Section
III, our proposed method is explained in depth. Section IV
includes an evaluation of our proposed method. Section V
summarizes our conclusions.

Fig. 3: Stochastic weighted adder using a single multiplexer.

II. BACKGROUND

A. Basic Concept

Stochastic Computing is a probabilistic computing
method [1], where numbers in the range [0,1] are represented
with the probability of the occurrence of 1s in a bit-stream.
The bit-stream is called a stochastic number (SN). The
precision of the representation is a direct function of the
length of the bit-stream: The longer the bit-stream, the closer
the expected value to the desired value.

For example, the SN x = 0100 1000 is an 8-bit sequence,
with a probability of 2/8 = 0.25 for the occurrence of bit
value 1, thus it represents the number 0.25. Unipolar SNs
represent only positive numbers and have a range of [0,1].
Positive numbers in a wider range can be normalized to the
[0,1] range. To represent both positive and negative numbers,
Bipolar SNs are used, whose range is [-1,1]. More specifically,
an SN with N1 1s and N0 0s represents the number xu, and
xb as a unipolar SN, and bipolar SN, respectively, where

xu =
N1

N1 +N0
(1)

xb =
N1 −N0

N1 +N0
(2)

SN can be generated by comparing the output of RNGs [6],
[9], and the binary value of the number to be generated as
shown in Fig. 1. Bit-streams generated using RNGs such
as LFSRs lack accuracy due to random fluctuation of bits in
the stream. For an N -bit binary number, up to 2N bits are
required to represent it as an SN. Arithmetic functions such as
multiplication and addition on SNs are performed using simple
gates (such as an AND gate and a multiplexer, respectively,
as shown in Fig. 2 and Fig. 3). Due to this property, SC
is area-efficient. SC schemes are ideal for applications that
are limited by hardware area. In addition, applications using
stochastic circuits benefit from lowered cost in making the
circuits, as the number of logic used in SC is far less than the
conventional binary applications.

B. Deterministic Processing

Pseudo Random and Quasi Random number generators
(RNG) play an integral role in generating stochastic numbers
[6]. RNGs such as LFSRs can be used when the application is
error-tolerant. However, quasi-random number generators such
as counter-based and bit-shuffling-based number generators



TABLE II: Processing cycle comparison of SC multipliers
using bit splitting for 8-bit operands.

Split Coefficient Processing Cycles

1 22N 216

2 2N 28

4 2N/2 24

are necessary for an accurate result. Recent work shows that
bit-streams do not necessarily have to be random and intro-
duced a deterministic way of computing [3,4,5]. Deterministic
SC uses SN operands with relatively prime lengths to achieve
highly accurate results. Accuracy is achieved by maintaining
independence between bit-streams, where each bit from one
operand sees each of the bits in the other operand exactly
once. [3]. Relatively prime length, clock division, and rotation
are among the deterministic ways of generating bits. These
methods use a simple bit shuffling technique to achieve highly
accurate results.

C. Parallel Computing

Parallel computing schemes have been shown to reduce the
latency of SC that is caused by the high number of processing
cycles. In these schemes, an arithmetic operation is performed
after splitting the bit-streams. In [10] a stochastic multiplier
with parallel paths has been proposed using a deterministic
computing scheme.

Najafi et al.’s resolution splitting method [8] shows a parallel
computing scheme that splits the operands using a splitting
coefficient C and performs operation processing on the partial
products in a parallel fashion. For example, given two 8-bit
binary numbers X = 1001 1011 and Y = 1011 1001 and a
splitting coefficient of 2, parallel computing can be performed
on the partial products, X0 = 1001, X1 = 1011, Y 0 = 1011,
Y 1 = 1001. The two operands can be expressed as follows:

X = X0 · 2N/2 +X1, Y = Y0 · 2N/2 + Y1 (3)

The product is the sum of the partial products of the split
operands.

X ·Y = (X0 ·Y0) ·2N+(X0 ·Y1+X1 ·Y0) ·2N/2+X1 ·Y1 (4)

D. Low Discrepancy Sequences

Low discrepancy (LD) or quasi-random sequences comprise
bit-streams with equally distributed 1s and 0s [6]. A fast
converging result can be achieved when using LD instead of
pseudo-random sequences that are generated by LFSRs and
other methods. This means processing cycles can be reduced
and the accuracy of the result is higher. The most commonly
used LD sequences are the Sobol and Halton sequences [11].
Although accurate results can be achieved using Sobol and
Halton sequences, the hardware overhead of the bit-stream
generation remains higher compared to LD sequences such

as FSM-based generators, which use a simple bit shuffling
scheme and a down counter to save processing time.

FSM-based circuits generate LD sequences by using 2N

state FSMs. The FSMs perform the bit shuffling to generate
the quasi-random bit-stream that results in equally distributed
1s and 0s. The core principle of the bit shuffling, which was
introduced by Sim and Lee [7], is that given a binary number
x = xN−1xN−2 . . . x0, the stochastic stream X includes, first,
xN−i bits appear 2i−1 cycle and 2i cycle till the stream gets
to a length of 2N . The output of the FSM is then used as
a select bit of a multiplexer which selects between the input
bits.

FSM-based multipliers, unlike other stochastic multipliers,
do not need 2 separate RNGs when multiplying 2 numbers.
Instead, the bit-stream of one of the operands is fed into
an AND gate and the second operand is fed to the down
counter. The down counter determines the run duration based
on the value of the operand that was fed to it. This guarantees
convergence to the result without processing the entire bit-
stream. As a result, energy consumption will be lowered. The
number of cycles needed for multiplying two numbers is 2N ·y,
where y is the second operand. For instance, if y has a value
of 1, the processing will take 2N cycles as opposed to 22N in
conventional and deterministic cases. For example, if you have
an 8-bit number x, and you multiply it with 1, the bit-stream
needed to be generated to get an accurate result is 28. In the
conventional stochastic cases, we will need to wait for the full
22N cycles, in this case, 216 clock cycles to get the product.

FSM-based multipliers suffer from a high processing cycle
as the precision of the operands increases. To mitigate this,
Sim and Lee propose a bit-parallel approach [7]. This method
involves the division of stochastic streams into N segments
and multiplication performed by using a counter. The counter
counts the number of 1s in each segment and produces an
accurate result. For example, when multiplying two 8-bit
numbers, the 256 stream is divided into 32 segments. The
up counter then counts the number of ones in each segment
until the down counter counts to 0.

III. OUR PROPOSED METHOD

A. Overview

In this section, we propose combining resolution splitting
with the FSM-based LD sequence generator to reduce the
processing latency of SC for both the average and the worst
cases.

B. Multiplier with Early Completion

Our base multiplier structure is the FSM-based serial design
by Sim and Lee [7]. One of the operands are generated by
an FSM-based generator. The other operand is generated as
a unary number with the help of a down counter. The down
counter takes one of the operands, y as its input, and starts
counting down from the initial value of 2N · y. This initial
value also determines the bit-stream length. The multiplication
operation continues until the down counter reaches zero.
The second operand is fed to an FSM-based LD sequence



generator. The output of the down counter and the bit generator
are fed to an AND gate, which determines whether the up
counter (i.e., accumulator) is incremented in a given cycle.
When the down counter reaches zero, the up counter will have
the product of the two operands.

This approach from Sim and Lee reduces the average
latency of operation. If y is less than 2N−1, the multiplication
completes sooner than other LD-based SCs. The smaller the
value of y, the shorter will be the latency. However, this
approach does not improve the worst-case. On the other hand,
by combining this approach with the resolution splitting, we
were able to reduce both worst-case and average-case behavior
(Section III-C).

C. Average and Worst Case Latency Improvements
Parallel computing methods such as the resolution splitting

proposed by Najafi et al. [8] enable reductions in latency in
the worst case. However, these methods do not take advantage
of the operand values to further speed up the operations in the
average case. As discussed in the previous section, the early
completion techniques can finish the multiplication early based
on the operand values and do not cause any loss in accuracy.
Here, we combine these two methods to get the best outcome
for both average and worst cases. In resolution splitting, each
operation is divided into operations with smaller operands
and computes partial products. Once the partial products are
computed, they are combined into the final product via an
adder/shifter network. A splitting coefficient, C, a power of 2,
determines the number of operand splits. The block diagram
of an 8-bit multiplier using resolution splitting on FSM-based
serial multipliers is shown in Fig. 4 with C = 2. The four
individual multiplier modules are responsible for multiplying
the partial products. One of the partial products is multiplied
by 28 and the sum of the other two is multiplied by 24

following (4) with N = 8. Using an appropriate adder tree,
the latency can be further reduced using a higher C [8].

Fig. 4: Our proposed multiplier combines FSM-based serial
multipliers with a resolution splitting method (C=2).

IV. EVALUATION

A. Application: Image Filtering
To evaluate the performance of the proposed multiplier for a

practical application, we compared it to various multipliers for

(a) Noisy Image (b) Filtered Image

Fig. 5: Example image Cameraman with size 265× 256.

image filtering using Matlab. In image processing, numerous
filters are applied to enhance an image. Common applications
of these filters include noise reduction and quality enhance-
ment. The convolution operation between an image and a filter
(i.e., kernel) is given by:

g(x, y) =

3∑
i=1

3∑
j=1

f(x+ i− 1, y + j − 1) · k(i, j) (5)

where: g(x, y) is the filtered pixel at (x, y), f(α, β) is a
pixel, k(i, j) is the (i, j)th coefficient in the kernel. The 3×3
Gaussian Blur Kernel with a standard deviation (σ) of 2 is
used for noise reduction here (6).

Gaussian blur kernel:


0.078 0.082 0.078

0.082 0.089 0.082

0.078 0.082 0.078

 (6)

We used the Cameraman image of size 256× 256 with noise
as shown in Fig. 5a.

Fig. 6: Image filtering operation.

In this paper, we used the image filtering operation illus-
trated in Fig. 6. The image is zero-padded at all edges to
accommodate the filtering of the border pixels. Then, the
kernel is applied to each 3 × 3 sub-matrix in the padded
image using (6). The 9 multiplication operations for each
sub-matrix are carried out with different multipliers, and the
sums are accumulated to generate each filtered pixel. The
resulting filtered image is shown in Fig. 5b. The speed-ups
for 4 multipliers normalized to the latency of the conventional
stochastic multiplier are shown in Table III.

The proposed method shows speed-ups of 604× compared
to the conventional stochastic, and 2.35× compared to the
next fastest approach (LFSR-based multiplier). In addition, the
proposed method shows over 8× speed-up compared to the
FSM-based parallel method.



TABLE III: Comparison of Multiplier Speed-ups.

Method Speed-up

Conventional Stochastic 1×
FSM-based Serial 9×
FSM-based Parallel 74×
LFSR-based with split (C=2) 256×
Proposed method (C=2) 604×

B. Resource Utilization

To evaluate the hardware area of the proposed result, we
have implemented an 8-bit multiplier module with a split
coefficient, C = 2 in Verilog. The design is synthesized for
FPGA using AMD/Xilinx Vivado 2023.2. Table IV shows
the synthesis result of different stochastic multipliers and the
Booth binary multiplier as a reference.

Our results are shown in Table IV. The proposed method has
an area comparable to the fastest FSM-based Parallel method.
However, its area is larger than the resolution splitting method
by 74% more LUTs, and 18% more FFs. Nevertheless, our
method is much faster as shown above compared to both
methods, which can justify the area overhead for suitable
applications such as image filtering.

TABLE IV: Comparison of FPGA resource utilization of 8-bit
Binary and Stochastic Multipliers.

Method LUT FF

Booth Binary Multiplier 264 -
Conventional Stochastic 12 35
FSM-based Serial 36 37
FSM-based Parallel 91 75
LFSR-based resolution splitting (C = 2) 53 61
Proposed method (C = 2) 92 72

V. CONCLUSIONS

In this paper, we combined two orthogonal methods for la-
tency reduction in stochastic computing and achieved accurate
results with significantly lower latency. Although the average-
case improvements do not offer any improvements in the
worst-case, which is a concern for instance in applications with
heightened security, they are beneficial for many applications.
We showed image filtering as an example viable application,
where the latency is determined by the filter coefficients, which
are taken from practical values.

ACKNOWLEDGMENT

This work is partially funded by a New York Institute of
Technology (NYIT) Institutional Support for Research and
Creativity (ISRC) Grant.

REFERENCES

[1] C. Winstead, “Tutorial on stochastic computing,” Stochastic Computing:
Techniques and Applications, pp. 39–76, 2019.

[2] J. H. Anderson, Y. Hara-Azumi, and S. Yamashita, “Effect of lfsr
seeding, scrambling and feedback polynomial on stochastic computing
accuracy,” in 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2016, pp. 1550–1555.

[3] D. Jenson and M. Riedel, “A deterministic approach to stochastic com-
putation,” in 2016 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2016, pp. 1–8.

[4] M. H. Najafi, S. Jamali-Zavareh, D. J. Lilja, M. D. Riedel, K. Bazargan,
and R. Harjani, “Time-encoded values for highly efficient stochastic
circuits,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 5, pp. 1644–1657, 2017.

[5] M. H. Najafi, D. J. Lilja, M. Riedel, and K. Bazargan, “Power and
area efficient sorting networks using unary processing,” in 2017 IEEE
International Conference on Computer Design (ICCD). IEEE, 2017,
pp. 125–128.

[6] H. Hsiao, J. Anderson, and Y. Hara-Azumi, “Generating stochastic
bitstreams,” Stochastic Computing: Techniques and Applications, pp.
137–152, 2019.

[7] H. Sim and J. Lee, “A new stochastic computing multiplier with
application to deep convolutional neural networks,” in Proceedings of
the 54th annual design automation conference 2017, 2017, pp. 1–6.

[8] M. H. Najafi, S. R. Faraji, B. Li, D. J. Lilja, and K. Bazargan, “Accel-
erating deterministic bit-stream computing with resolution splitting,” in
20th International Symposium on Quality Electronic Design (ISQED).
IEEE, 2019, pp. 157–162.

[9] P. Y. Chawke and R. Kshirsagar, “Design of 8 and 16 bit lfsr with
maximum length feedback polynomial using verilog,” in Proceedings of
13th IRF International Conference, 2014.

[10] Y. Zhang, S. Liu, J. Han, Z. Lin, S. Wang, X. Cheng, and G. Xie,
“An energy-efficient binary-interfaced stochastic multiplier using parallel
datapaths,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2023.

[11] S. Liu and J. Han, “Toward energy-efficient stochastic circuits using
parallel sobol sequences,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 7, pp. 1326–1339, 2018.


